
Darcs and GADTs
Ganesh Sittampalam

Credit Suisse



Outline
• Darcs

• GADTs

• How GADTs help darcs



Version control systems
• Keep a history of changes to a project

• A basis for collaboration
– Lock based

– Merge based



Centralised VCS
CVS
Subversion (SVN)
Clearcase
…



Distributed VCS

Arch
Mercurial
Bzr

Git
Darcs
…



Tree-based merging

A B

result?



Tree-based merging

A B

• Find basebase

result?



Tree-based merging

A B

• Find base
• Calculate diffs
• Adjust offsets
• Apply

base

result



Tree-based merging

A B

• Find base
• Calculate diffs
• Adjust offsets
• Apply

base

result



Tree-based merging
• Base can be hard to find

– Can have to artificially construct it

• Ignores the intermediate revisions
– Not compositional

• Can choose algorithm at time of merge



Patch-based merging
• Each revision is viewed as a “patch” 

against the previous version
• Merge algorithm is locked in when patch 

is created
– “Intelligent” patch types like token replace

• Sequences of revisions merged by 
merging individual patches
– Results repeatable and compositional



Darcs
• Repo is conceptually a set of patches
• Representation places them in an order

– Only some orders are valid

• Push and pull patches between repos
• Branches are just repos with different 

sets of patches
– Merge = take the union



Commutation

A

BB’

A’

AB B’A’ 

Makes cherry-
picking easy



Merging

A

B’ ?B

A’ ?



Merging

A

B’ ?B

A’ ?

A

B’ ?

B

A’ ?



Merging

A

B’ ?B

A’ ?

A

B’-1 ?

B-1

A’ ?



Patch theory
• Set of rules about how patches behave

• Not yet properly understood
– Very few theorems

• Notation a bit confusing



Some basic properties
AB B’A’ 

B’A’ AB 

B’-1A A’B-1

⇔
⇔



“Permutivity”

A

BB’

A’

CC’

A’’

C’’

B’’

A’’’

B’’’

C’’’



“Permutivity”

A

BB’

A’

CC’

A’’

C’’

B’’

A’’’

B’’’

C’’’

ABC



“Permutivity”

A

BB’

A’

CC’

A’’ ABC

B’A’C

C’’

B’’

A’’’

B’’’

C’’’



“Permutivity”

A

BB’

A’

CC’

A’’ ABC

B’A’C

B’C’A’’

C’’

B’’

A’’’

B’’’

C’’’



“Permutivity”

A

BB’

A’

CC’

A’’ ABC

B’A’C

B’C’A’’

C’’B’’A’’

C’’

B’’

A’’’

B’’’

C’’’



“Permutivity”

A

BB’

A’

CC’

A’’ ABC

B’A’C

B’C’A’’

C’’B’’A’’

C’’A’’’B’’’
C’’

B’’

A’’’

B’’’

C’’’



“Permutivity”

A

BB’

A’

CC’

A’’ ABC

B’A’C

B’C’A’’

C’’B’’A’’

C’’A’’’B’’’

A’’’’C’’’B’’’
C’’

B’’

A’’’

B’’’

C’’’



“Permutivity”

A

BB’

A’

CC’

A’’ ABC

B’A’C

B’C’A’’

C’’B’’A’’

C’’A’’’B’’’

A’’’’C’’’B’’’

A’’’’B’’’’C’’’’

C’’

B’’

A’’’

B’’’

C’’’



Some GHC extensions



ADT
data Expr t =

Const t
| Times (Expr t) (Expr t)

Times (Const ‘a’) (Const ‘b’) ??

Algebraic = unrestricted sums and products



ADT
data Expr t where

Const :: t � Expr t
Times :: Expr t � Expr t � Expr t

with new syntax

Times (Const ‘a’) (Const ‘b’) ??

Algebraic = unrestricted sums and products



GADTs
data Expr t where

Const :: t � Expr t
Times :: Expr Int � Expr Int � Expr Int

Times (Const ‘a’) (Const ‘b’)

Generalised algebraic = restricted sums and products



“Existential” types
data Number = forall x . Num x ⇒ Number x

Number (5 :: Int)
Number (5.0 :: Double)
…

We can construct Number using any x in Num



“Existential” types
data Number = forall x . Num x ⇒ Number x

inc :: Number � Number
inc (Number a) = Number (a+1)

instance Show Number where
show (Number a) = show a

When we use Number, we only know that x is in Num

Show x ⇒ Num x



Existential types, GADT style
data Number = forall x . Num x ⇒ Number x

⇓
data Number where
Number :: Num x ⇒ x � Number



Putting these types to work



data Patch where
Null :: Patch
Seq :: Patch � Patch � Patch
…

Working with patches
AB B’A’ 

commute :: Patch � Patch � Maybe (Patch, Patch)



Working with patches

commute :: Patch � Patch � Maybe (Patch, Patch)
commute (Seq a b) c
= do (a’, c’)  � commute a c

(b’, c’’) � commute b c’
return (Seq a’ b’, c’’)

(AB)C ? 



Working with patches

commute :: Patch � Patch � Maybe (Patch, Patch)
commute (Seq a b) c
= do (b’, c’)  � commute b c

(a’, c’’) � commute a c’
return (Seq a’ b’, c’’)

(AB)C ? 



GADT
data Patch x y where
Null :: Patch x x
Seq :: Patch x y � Patch y z � Patch x z
…

commute :: Patch x y � Patch y z 
� Maybe (Patch x w, Patch w z)

Phantom types represent the repository state



What’s going on?

A

BB’

A’

AB B’A’ commute ::
Patch x y �
Patch y z �
Maybe
(Patch x w,
Patch w z)

x y

zw



Safer commute

A

C’C’’

A’

B

B’

C

x y

zw

t

u

commute :: Patch x y � Patch y z
� Maybe (Patch x w, Patch w z)



So is it actually useful?
• Upcoming darcs 2.0 release

– Rewrite of conflict handling code

– Conditionally compiled with GADTs
– Very positive influence:

• Conversion process found at least one bug in 
existing code

• “very valuable in exploratory development”



Limitations
• There have to be “unsafe” operations in some 

places
– e.g. when constructing “primitive” patches
– Cordon those off to a small number of cases, and 

use comments to explain ourselves

• Working with GADTs can be painful
– Extra type signatures
– Confusing error messages



The end



Sealing
commute :: Patch x y � Patch y z

� Maybe (Patch x w, Patch w z)



Sealing
commute :: forall x y w z

. Patch x y � Patch y z
� Maybe (Patch x w, Patch w z)



Sealing
commute :: forall x y w z

. Patch x y � Patch y z
� Maybe (Patch x w, Patch w z)

data CommutePair x y where
CommutePair :: Patch x y � Patch y z

� Patch x z



Sealing
commute :: forall x z

. CommutePair x z
� Maybe (CommutePair x z)

data CommutePair x y where
CommutePair :: Patch x y � Patch y z

� Patch x z



Data structures
data FL p x y where
NilFL :: FL p x x
ConsFL :: FL p x y � FL p y z � FL p x z

data Tree p x where
NilTree :: Tree x
SeqTree :: p x y � Tree y � Tree x
ParTree :: Tree x � Tree x � Tree x



DAGs
• Based on Martin Erwig’s inductive 

graphs


